

► Transaction Processing Concepts - overview of concurrency control,
Transaction Model, Significance of concurrency Control & Recovery,
Transaction States, System Log, Desirable Properties of transactions.

► Serial schedules, Concurrent and Serializable Schedules, Conflict
equivalence and conflict serializability, Recoverable and cascade-less
schedules, Locking, Two-phase locking and its variations. Log-based
recovery, Deferred database modification, check-pointing.

► Introduction to NoSQL Databases, Main characteristics of Key-value DB
(examples from: Redis), Document DB (examples from: MongoDB)

► Main characteristics of Column - Family DB (examples from: Cassandra)
and Graph DB (examples from : ArangoDB)

Introduction to NoSQL

Databases

► NoSQL database stands for “Not Only SQL” or “Not SQL.”
► It is a non-relational Data Management System, that does not require a

fixed schema.
► It avoids joins, and is easy to scale. The major purpose of using a NoSQL

database is for distributed data stores with humongous data storage
needs.

► NoSQL is used for Big data and real-time web apps.
► For example, companies like Twitter, Facebook and Google collect

terabytes of user data every single day.

► The concept of NoSQL databases became popular with Internet giants like
Google, Facebook, Amazon, etc. who deal with huge volumes of data.

► The system response time becomes slow when you use RDBMS for
massive volumes of data.

► To resolve this problem, we could “scale up” our systems by upgrading
our existing hardware. This process is expensive.

► The alternative for this issue is to distribute database load on multiple
hosts whenever the load increases. This method is known as “scaling
out.”

► NoSQL database is non-relational, so it scales out better than relational
databases as they are designed with web applications in mind.

► 1998- Carlo Strozzi use the term NoSQL for his lightweight, open-source
relational database

► 2000- Graph database Neo4j is launched
► 2004- Google BigTable is launched
► 2005- CouchDB is launched
► 2007- The research paper on Amazon Dynamo is released
► 2008- Facebooks open sources the Cassandra project
► 2009- The term NoSQL was reintroduced

► Non-relational
► NoSQL databases never follow the relational model
► Never provide tables with flat fixed-column records
► Work with self-contained aggregates or BLOBs
► Doesn’t require object-relational mapping and data normalization
► No complex features like query languages, query planners,referential integrity joins,

ACID
► Schema-free

► NoSQL databases are either schema-free or have relaxed schemas
► Do not require any sort of definition of the schema of the data
► Offers heterogeneous structures of data in the same domain

► Simple API
► Offers easy to use interfaces for storage and querying data provided
► APIs allow low-level data manipulation & selection methods
► Text-based protocols mostly used with HTTP REST with JSON
► Mostly used no standard based NoSQL query language
► Web-enabled databases running as internet-facing services

► Distributed
► Multiple NoSQL databases can be executed in a distributed fashion
► Offers auto-scaling and fail-over capabilities
► Often ACID concept can be sacrificed for scalability and throughput
► Mostly no synchronous replication between distributed nodes Asynchronous Multi-

Master Replication, peer-to-peer, HDFS Replication
► Only providing eventual consistency
► Shared Nothing Architecture. This enables less coordination and higher distribution.

► NoSQL Databases are mainly categorized into four types:
► Key-value Pair Based
► Column-oriented
► Graphs based
► Document-oriented

► A key-value database (sometimes called a key-value store) uses a simple
key-value method to store data.

► These databases contain a simple string (the key) that is always unique and
an arbitrary large data field (the value).

► They are easy to design and implement.

► As the name suggests, this type of NoSQL database implements a hash
table to store unique keys along with the pointers to the corresponding
data values.

► The values can be of scalar data types such as integers or complex
structures such as JSON, lists, BLOB, and so on.

► A value can be stored as an integer, a string, JSON, or an array—with a key
used to reference that value.

► It typically offers excellent performance and can be optimized to fit an
organization’s needs.

► Key-value stores have no query language but they do provide a way to add
and remove key-value pairs.

► Values cannot be queried or searched upon. Only the key can be queried.

A simple example of key-value data store.

► When your application needs to handle lots of small continuous reads and
writes, that may be volatile. Key-value databases offer fast in-memory
access.

► When storing basic information, such as customer details; storing
webpages with the URL as the key and the webpage as the value; storing
shopping-cart contents, product categories, e-commerce product details

► For applications that don’t require frequent updates or need to support
complex queries.

► Session management on a large scale.
► Using cache to accelerate application responses.
► Storing personal data on specific users.
► Product recommendations, storing personalized lists of items for

individual customers.
► Managing each player’s session in massive multiplayer online

games.
► Redis, Dynamo, Riak are some NoSQL examples of key-value store

DataBases.

► While a relational database stores data in rows and reads data row by row,
a column store is organized as a set of columns.

► When you want to run analytics on a small number of columns, you can
read those columns directly without consuming memory with the
unwanted data.

► Columns are often of the same type and benefit from more efficient
compression, making reads even faster.

► Columnar databases can quickly aggregate the value of a given column
(adding up the total sales for the year, for example). Use cases include
analytics.

► Column databases use the concept of keyspace, which is sort of like a
schema in relational models.

► This keyspace contains all the column families, which then contain rows,
which then contain columns.

► If we take a specific row as an example:

► The Row Key is exactly that: the specific identifier of that row and is always unique.
► The column contains the name, value, and timestamp, so that’s straightforward. The

name/value pair is also straight forward, and the timestamp is the date and time the data
was entered into the database.

► Some examples of column-store databases include Casandra, CosmoDB, Bigtable, and
HBase.

► Developers mainly use column databases in:
► Content management systems
► Blogging platforms
► Systems that maintain counters
► Services that have expiring usage
► Systems that require heavy write requests (like log aggregators)

► There are several benefits that go along with columnar databases:
► Column stores are excellent at compression and therefore are efficient in terms of

storage.
► You can reduce disk resources while holding massive amounts of information in a single

column
► Since a majority of the information is stored in a column, aggregation queries are quite

fast, which is important for projects that require large amounts of queries in a small
amount of time.

► Scalability is excellent with column-store databases.
► They can be expanded nearly infinitely, and are often spread across large clusters of

machines, even numbering in thousands.
► That also means that they are great for Massive Parallel Processing

► Load times are similarly excellent, as you can easily load a billion-row table
in a few seconds.
► You can load and query nearly instantly.

► Large amounts of flexibility as columns do not necessarily have to look like
each other.
► You can add new and different columns without disrupting the whole database.

► Is a modernized way of storing data as JSON rather than basic
columns/rows — i.e. storing data in its native form.

► This storage system lets you retrieve, store, and manage document-
oriented information

► It’s a very popular category of modern NoSQL databases, used by the likes
of MongoDB, Cosmos DB, DocumentDB, SimpleDB, PostgreSQL, OrientDB,
Elasticsearch and RavenDB.

► This is an example of a document that might appear in a
document database like MongoDB.

► This sample document represents a company contact
card, describing an employee called Sammy:

► Notice that the document is written as a JSON object.
► JSON is a human-readable data format that has become quite popular in recent years.
► While many different formats can be used to represent data within a document

database, such as XML or YAML, JSON is one of the most common choices.
► For example, MongoDB adopted JSON as the primary data format to define and

manage data.

► A few of the most important benefits are:
► Flexibility and adaptability: with a high level of control over the data structure,

document databases enable experimentation and adaptation to new emerging
requirements.

► New fields can be added right away and existing ones can be changed any time.
► It’s up to the developer to decide whether old documents must be amended or the

change can be implemented only going forward.
► Ability to manage structured and unstructured data: Document databases can

be used to handle structured data as well, but they’re also quite useful for storing
unstructured data where necessary.

► Scalability by design: Conversely, document databases are designed as distributed
systems that instead allow you to scale horizontally (meaning that you split a single
database up across multiple servers).

► Graph databases are generally straightforward in how they’re structured
though. They primarily are composed of two components:

► The Node
► This is the actual piece of data itself.
► It can be the number of viewers of a youtube video, the number of people who have

read a tweet, or it could even be basic information such as people’s names,
addresses, and so forth.

► The Edge
► This explains the actual relationship between two nodes.
► Interestingly enough, edges can also have their own pieces of information, such as

the nature of the relation between two nodes. Similarly, edges might also have
directions describing the flow of said data.

► With the advent of the NoSQL movement, businesses of all sizes have a
variety of modern options from which to build solutions relevant to their
use cases.
► Calculating average income? Ask a relational database.
► Building a shopping cart? Use a key-value Store.
► Storing structured product information? Store as a document.
► Describing how a user got from point A to point B? Follow a graph.

► Examples of Graph Databases
► Neo4j, ArangoDB

Key-Value Model Key-Value as Graph

Document Model
Document as Graph

► https://www.guru99.com/nosql-tutorial.html
► https://redis.com/nosql/key-value-databases/
► https://www.mongodb.com/scale/types-of-nosql-databases
► https://www.kdnuggets.com/2021/02/understanding-nosql-

database- types-column-oriented-databases.html
► https://ravendb.net/articles/nosql-document-oriented-databases-

detailed- overview

https://www.guru99.com/nosql-tutorial.html
https://redis.com/nosql/key-value-databases/
https://www.mongodb.com/scale/types-of-nosql-databases
https://www.kdnuggets.com/2021/02/understanding-nosql-database-types-column-oriented-databases.html
https://ravendb.net/articles/nosql-document-oriented-databases-detailed-overview

